Giant nanocrystal quantum dots: stable down-conversion phosphors that exploit a large stokes shift and efficient shell-to-core energy relaxation.
نویسندگان
چکیده
A new class of nanocrystal quantum dot (NQD), the "giant" NQD (g-NQD), was investigated for its potential to address outstanding issues associated with the use of NQDs as down-conversion phosphors in light-emitting devices, namely, insufficient chemical/photostability and extensive self-reabsorption when packed in high densities or in thick films. Here, we demonstrate that g-NQDs afford significantly enhanced operational stability compared to their conventional NQD counterparts and minimal self-reabsorption losses. The latter results from a characteristic large Stokes shift (>100 nm; >0.39 eV), which itself is a manifestation of the internal structure of these uniquely thick-shelled NQDs. In carefully prepared g-NQDs, light absorption occurs predominantly in the shell but emission occurs exclusively from the core. We directly compare for the first time the processes of shell→core energy relaxation and core→core energy transfer by evaluating CdS→CdSe down-conversion of blue→red light in g-NQDs and in a comparable mixed-NQD (CdSe and CdS) thin film, revealing that the internal energy relaxation process affords a more efficient and color-pure conversion of blue to red light compared to energy transfer. Lastly, we demonstrate the facile fabrication of white-light devices with correlated color temperature tuned from ∼3200 to 5800 K.
منابع مشابه
Large Stokes Shift and High Efficiency Luminescent Solar Concentrator Incorporated with CuInS2/ZnS Quantum Dots
Luminescent solar concentrator (LSC) incorporated with quantum dots (QDs) have been widely regarded as one of the most important development trends of cost-effective solar energy. In this study, for the first time we report a new QDs-LSC integrated with heavy metal free CuInS2/ZnS core/shell QDs with large Stokes shift and high optical efficiency. The as-prepared CuInS2/ZnS QDs possess advantag...
متن کاملEnvironmentally Benign Technology for Efficient Warm-White Light Emission
Nowadays efficient down conversion for white light emission is mainly based on rare-earth doped phosphors or cadmium-containing quantum dots. Although they exhibit high luminescence efficiency, the rare-earth mining and cadmium pollution have so far led to extremely high environmental cost, which conflicts the original purpose of pursuing efficient lighting. Here, we explore a new strategy to a...
متن کاملMultispectral imaging via luminescent down-shifting with colloidal quantum dots
The high infrared quantum yield, continuous absorption spectrum, and band edge tunability of colloidal quantum dots (QD) has opened up new opportunities to use luminescent down shifting for multispectral imaging in the infrared. We demonstrate a QD sensitized short wavelength infrared (SWIR) camera which is capable of UV-SWIR multispectral imaging. The application of multispectral cameras for U...
متن کاملEnhanced energy transfer in quasi-quaternary nanocrystal superlattices.
Quasi-quaternary nanocrystal superlattices are assembled by using exclusively core-shell particles as building blocks. The assemblies show an enhancement of energy-transfer from cadmium selenide-based core-shell quantum dots to gold-iron oxide core-shell nanocrystals compared to random mixtures of the same components.
متن کاملInfluence of the Shell Thickness and Ratio Between Core Elements on Photostability of the CdTe/CdS Core/Shell Quantum Dots Embedded in a Polymer Matrix
This paper reports a study of photooxidation and photomodification processes of the CdTe/CdS quantum dots embedded in a polymer matrix under ambient condition. During the first few minutes of irradiation, the quasi-inverse increase in photoluminescence intensity has been observed indicating the passivation of the nanocrystal surface traps by water molecules. A prolonged irradiation of the polym...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 12 6 شماره
صفحات -
تاریخ انتشار 2012